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Abstract
We propose algorithms for the design of FIR com-
paction filters, which find applications in FIR subband
coders. The techniques produce compaction gains very
close to that of optimal compaction filters, for any
fized filter order and input eutocorrelation. The main
theme of the paper is the design of multistage FIR com-
paction filters based on an iterated linear programming
approach. The theory behind this is presented followed
by design ezamples and comparisons. Also, a noniter-
ative algorithm much faster than other iterative opti-

mization techniques (e.g. linear programming) will be -

briefly mentioned. Further details of noniterative tech-
niques will be presented elsewhere.

1 Introduction

We will describe some efficient methods to design FIR
compaction filters. These filters find application in
M —channel FIR orthonormal filter banks [11]. Because
of this basic application, we will refer to “M —channel
compaction filters”, although there will be only one fil-
ter to work with. The theory and design details depend
on M.

Compaction filters have attracted a great deal of
attention due mainly to the recently discovered fact
[9, 13] that they are the building blocks of optimal or-
thonormal (paraunitary) filter banks. This connection
however is made for the case where the filters are al-
lowed to be ideal. A number of authors considered the
finite order (FIR) compaction filter design problem for
the two-channel case [2, 1, 14, 10, 6, 8] and for the
M —channel case {7].

It is possible to design optimal FIR compaction ﬁl-
ters by using linear programming. However, when the
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filter orders are high, the computational complexity of
the linear programming technique becomes very high.
We propose an algorithm to design the filters in mul-
tiple stages resulting in efficiency in both design and '
implementation phases. We also briefly describe a non-

iterative design technique called the window method.

Also mentioned is a new analytical method in the two-
channel case. The details of these noniterative design

- methods will be presented elsewhere [4].

2 The FIR energy compaction problem
Let H (2) be an FIR filter of order N. Consider

Fig. 1 where the input z(n) is a zero-mean WSS random
process with the power spectral density Szz(e7“). The

z(n) — H(2) —.Eﬂl—" y(n)

Figure 1: The FIR energy compaction filter.

output of the filter is decimated by M to produce y(n).
The optimum FIR energy compaction problem is to
maximize the variance
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of y(n) subject to the Nyq®st(M) condition [11] on
G(e™?) = |H(e™)|?. Let the impulse response of
G(e’“) be g(n). Then, the Nyquist(M) condition is

g(Mn) = 8(n). Notice that by definition G(e/*) > 0.
Define the compaction gain as

® jw jwy dw
o2 [T |H(e )28z (e7¥) 52 @)
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where o2 is the variance of z(n). The aim therefore is
to maximize the compaction gain.
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As described in [4], the case where N < M and
the case where ideal filters are allowed are solved an-
alytically. Our interest is therefore for the case where
M <N < oo.

3 Linear Programniing

The use of linear programming method in compaction
filter design was proposed in [6], and is reviewed next.
Assume that the input process z(n) is real with the
autocorrelation sequence r(n). The output variance
can be written as

N
02 =r(0) +2) _ g(n)r(n) 3)

n=1

Let g4 and ry be the vectors formed by the nonzero

components of g(n) and r(n) for n =1,...N. That is,
ge = [9(1) 9(2) ... (M —1) g(M +1) ... g(N),
rq = [fQrQ) ... ((M-1)r(M+1) ... r(N))7.

Then (3) can be written as o2 = r(0) + 2rga
This incorporates the Nyquist(M) condition but
not the nonnegativity constraint on G(e?). Let
cd(w) [cos(w) cos(2w) ... cos((M — 1)w) cos((M +

Dw) ... cos(Nw)]7T. Then G(e™) = 1+ 2¢T(w)gq-
Hence the problem is equivalent to the following:

maximize rJ g4,
subject to c¥(w)gq > —0.5, Vw € [0, 7].

This type of problem is typically classified as semiin-
finite linear programming [6]. By discretizing the fre-
quency, one reduces this to a well known standard lin-
ear programming problem.
Example 1. Let the input process be AR(5) as in
page 37 of [3] which is used to model speech signals.
Let M =8 and N = 15 and let us use L = 32 uniform
frequencies, wy = k2r/L,k =0,...,L — 1. We obtain
the frequency response G(e’“) shown in Fig. 2 which is
not nonnegative for all frequencies. In order to obtain
a compaction filter, we must have G(e/“) > 0. One
way to guarantee this is to “lift” G(e’“) by increasing
g(0) relative to the other coefficients (since g(0) has to
be 1, in effect we rescale g(n) for n # 0 by a constant
that is slightly less than 1). For this example, it turns
out that this constant is about 0.8044. The resulting
compaction gain is 3.7873. Optimum ideal compaction
filter gives a gain of 4.9721. .

In the next section we propose a new technique to
overcome the difficulty without having to find the min-
imum of G(e/”) which is necessary to decide on how
much to lift it.

Frequency response of the linear programming solution

magnitude
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Figure 2: Linear programming solution, Ex. 1.

3.1 Windowing of the linear programming
solution

Consider the periodical expansion gz(n) of the linear
programming solution where L is the number of dis-
crete uniform frequencies used in the design process.
Assume that L > 2N. Linear programming assures
that G(e’¥) is nonnegative at the uniform frequencies.
Hence the Fourier series coefficients G (k) of gr(n) are -
nonnegative. Now consider the product

w(n)gr(n) (4)

where w(n) is a symmetric window of length 2K + 1
(where K < L — N, see Fig. 3). If w(n) has nonnega-
tive Fourier transform W (e/*), the Fourier transform of
the product is nonnegative as well. The reason follows
from the fact that the Fourier transform of w(n)gr(n)
is a weighted sum of shifted versions of W(e?¥), with
nonnegative weights. For maximum compaction gain,
the symmetric order of w(n) is chosen to be maximum,
namely K = L — N — 1. One can use a fixed window

Figure 3: Windowing of the linear programming
solution.

like a triangular window as depicted in the figure and
get a satisfactory compaction gain. However one can




always optimize the window. The optimum w(n) is the
autocorrelation sequence of the maximal eigenfilter of
the K x K Hermitian Toeplitz matrix formed by the

product r(n)gr(n) [4]. Since the window length 2K +1-

is very high in linear programming designs, we suggest
to use a triangular window rather than optimizing the
window. The performance loss is negligibly small.

Example 2. Consider the previous example. Using a
triangular window of order K = L — N — 1 = 16, we
have the resulting compaction gain of 4.4967. This is
significantly better than that of the previous “lifting”
technique ir- Example 1. When we further optimize the
window, we find that the compaction gain is 4.6769. If
L = 256 however, we have the scaling constant 0.9986
in the lifting method with a corresponding compaction
gain of 4.8471. If we use triangular window of order

L — N — 1 = 240, we have the compaction of 4.8236 -

and if we optimize the window we have the compaction
gain of 4.8539. Recall that the ideal compaction gain
was 4.9721.

Example 3. Let the input be psd be as in Fig. 4 and
let N = 65 and M = 2. In the same figure, we plot the
magnitude square |H(e’“)|? of the compaction filter
H(z) designed by the linear programming method.
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Figure 4: The psd of an AR(5) process, and
the magnitude square of an optimal compaction
filter designed by linear programming (N = 65,
M = 2).

The number of frequencies used in the design pro-
cess was L = 512. We have used triangular window of
symmetric order K = L — N — 1 = 446 and found that
the resulting compaction gain is 1.8698. If we optimize
the window the compaction gain becomes 1.8744. If
we “lift” G(e’*), then we have the compaction gain of
1.8713. One can verify that the compaction gain of the
ideal (infinite order) compaction filter is 1.8754.

4 Multistage FIR (IFIR) compaction
filter design

Let M = MyM,; and consider Fig. 5(a). This can

be redrawn as in Fig. 5(b). The equivalent filter is -

H(z) = Ho(2)H1(zM°). We will first impose the
Nyquist(M) condition only on |[H(e?“)|?. Later we
will impose Nyquist conditions on individual filters that
guarantee the Nyquist(M) property of |H(e?“)]>. We
will describe the details of how to find H; (z) for a fixed
Hy(z) and vice versa, in an iterative manner.

2(n) —{ Hy(z) [l Mol—>{ Hy(2) =y Mil— 3(n)

@
z(n) —{ Hy(2) || B, (%) | —{f M}— 3(n)
o M=MM
(®)

Figure 5: A Multistage compaction filter design..
(a) Basic configuration, (b) Equivalent system.

Let Go(e) = |Ho(e°)|?, G1(e?*) = |Hi(e)]?,
and G(e’“) = |H(e’“)|> with impulse responses
go(n), g1(n), and g(n) respectively. Denote the orders
of Ho(z), Hi(z), and H(z) by Ny, N;, and N respec-
tively. Hence we have N = MgN; + Ny. Define

go = [90(0) 90(1) ... go(No)]7,
=[9:(0) ¢2(1) ... 1(NL)]",
=[g(0) g(1) ... g(M)".

Optimization of H;(z) for a given Hy(z). We have
G(z) = Go(2)G1(zM°). Let Gy be the (2N + 1) x
(2MoN; +1) convolution matrix formed by go(n). Tak-
ing into account the symmetries and the fact that
G1(zM°) has nonzero .components only for multiples
of My, we can write g = Apgi, where Ag is an
(N + 1) x (N7 + 1) matrix that is obtained from Go.
Now, the Nyquist(M) constraint requires that if we
decimate g by M we should get eg =[10 ... 0]7. Let
B denote the matrix that is obtained by taking every
Mth row of Ag. Then we should have Bogi = ep.
To force the nonnegativity constraint on Gj(e’), let
co(w) £ [1 2cos(w) 2cos(2w) ... 2cos(Niw)]T. Then
the constraint G(e¥) > 0 becomes col(w)gs >
0, Vw € [0,7]. Ifr = [r(O) 2r(1) ... 2r(N)]7, the
objective is to maximize r'g = r Aogl. Hence we
have reduced the problem to the following:

maximize roTg;,
subject to Bog1 = e, and co” (w)g1 > 0, Vw € [0,7],

where rg = Ao r. Hence a standard linear program--—-—--

ming algorithm can be applied, once a set of frequencies
is chosen for the inequality constraint.

Optimization of Hy(z) for a given H;(z). Similarly,
one can reduce the problem of finding the best Hp(z)
for a given H;(z) to the following linear programming -




problem:

maximize r1Tgo,
subject to Bigo = eo, and 1T (w)go 2 0, Yw € [0, 7],

where ¢1(w) = [1 2cos(w) 2cos(2w) ... 2cos(Now)]”,
r; = Ar’r. The (N + 1) x (No + 1) matrix A, is
obtained from the (2N + 1) x (2Np + 1) convolution
matrix formed by g;(n) by taking the symmetries into
account and the matrix B; is obtained by taking every
Mth row of Aj.

One can iterate between the above two optimiza-
tion steps until there is no significant change in the

~ compaction gain. The initial choice of go(n) can signif-

icantly affect the resulting compaction gain. According
to our design experience if go(n) is chosen to be a trian-
gular sequence, the compaction gain at the end of the
iteration is very good. The filters go(n) and g; (n) which
result from the iteration should spectrally be factorized
to identify Ho(z) and Hi(z). This step will be success-
ful only if the solutions are such that Go(e’*) > 0 and
G1(e’) > 0 for all w. If this is not the case, we can
force it by use of windowing on go(n) and gi1(n) as de-
scribed in Sec. 3.1 or by the “lifting” technique. If
this is done then the product filter Go(2)G1(z*°) will
not be exactly Nyquist(M). In the next subsection we
show how to overcome this problem.

Example 4. Let us design IFIR compaction filters
for the pair (M, N) = (36,65), and for the input pro-
cess whose psd was given in Fig. 4. Let Mo = 9 and
M; =4, and let Ny = 11 so that N; =6. The number
of frequencies used in the designs is L = 1024. Start-
ing with a triangular sequence for go(n), the algorithm
converges in a few steps. We windowed the resulting
solutions go(n) and gi(n) with triangular windows of
symmetric orders L—Ng—1and L—N; -1 respectively.
The final product filter was not exactly Nyquist(})
because it was found that g(36) ~ —0.0018 # 0. The
final compaction gain was 5.1444. If we design a com-
paction filter of order 18 directly (i.e., not using IFIR
technique), the compaction gain is 4.4225. This cor-
responds to a compaction filter with the same number
of active multipliers, namely 19. If we design a com-
paction filter of order 65 directly (66 active multipliers),
then the resulting compaction gain is 7.2337.

4.1 A Particular IFIR configuration

In Fig. 5, if Go(z) is Nyquist(Mo) and Gi(z) is
Nyquist(M;), it can be verified that G(z) given by
Go(2)G1(zM°) is Nyquist(M). Now, let us fix Ho(2)
to be a valid compaction filter for the pair (No, Mo).
Referring to Fig. 6(a), the best H;(z) is the optimum
compaction filter for (N1, M1), and for the input zo(n)

which has the psd Szozo(2) = (Go(z)s"(z))lw.
4]
Similarly, if H;(2) is a fixed compaction filter for the
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®

Figure 6: Special IFIR design configuration.

pair (N1, M), then we can redraw the configuration as

‘in Fig. 6(b). The best Hp(z) is the optimum com-

paction filter for (No, Mo), and for the input z1(n)
which has the psd Sz,z,(2) = G1(2°)Szz(z). One
can design the compaction filters Ho(2) and Hy(2) it-
eratively using any of the known techniques. Hence,
one can use the linear programming technique as well
as any other technique like the noniterative methods to
be mentioned in the next section. Also note that if the
ideal filters are allowed, this multistage configuration
has no loss of generality as shown in [5].

Example 5. Let the setup be the same as in the previ-
ous example. We have designed the compaction filters
Ho(2) and H;(z) iteratively using the standard linear
programming procedure as in Example 3. We have
started with Hj(z) = 1. The first compaction filter
Ho(2) is therefore the optimal compaction filter for the
pair (Mo, No) = (9, 11) for the original autocorrelation
sequence. We have windowed the final product filters
as we did in Example 3 to guarantee the nonnegativity.
The resulting overall compaction gain is 4.9432. This is
slightly smaller than the overall compaction gain 5. 1444
in Example 3. Howeéver, the resulting overall filter here
is exactly Nyquist(M) unlike the case of Example 4.

4.2 Noniterative techniques

In [4] we propose two noniterative methods for the
design of FIR compaction filters. One is for any
number of channels while the other is for the special
two-channel case. The first one is called the win-
dow method. Although it is suboptimal, the window -
method is applicable for any process including complex
ones. It has finite number of elementary steps and the
resulting compaction gains are very close to the opti-

‘mal ones especially for high filter orders. The second

method is called the analytical method. It finds the
optimal solution, but it is applicable for a restricted
class of random processes. Because of its relevance and
similarities to the linear programming method, we will




describe the window method briefly. The details of
both methods are presented in [4].

Window method. The main idea is to write the im-
pulse response of G(e?*) = |H(&/)[? in the form:

g(n) = gr(n)w(n) (5)

where g (n) is periodic(L), and w(n) has nonnegative
Fourier transform. The method takes the window to
be a triangular one, and finds the optimum gr(n). By
fixing this gz(n), the window w(n) is then optimized.
Optimizing gr(n) for a fixed w(n) is done by compar-
ing the psd at M alias frequencies for each wg = k2w /L
and assigning values to G (k) accordingly. Here G, (k)
is the Fourier series coefficients of gz(n). This can be
considered as finite version of the algorithm in [12].
Optimizing w(n) for a fixed gr(n) is an extremal eigen-
vector problem [4].

Relation to linear programming. In linear pro-
gramming we find a sequence whose Fourier transform
is nonnegative at some prescribed set of L frequen-
cies. If these are chosen to be L uniform frequencies
we = k2n/L,k = 0,...,L — 1, then we can associate
a periodic sequence gr(n) whose Fourier series coeffi-
cients are nonnegative. If we window this with w(n)
whose Fourier transform is nonnegative as in Sec. 3.1,
we guarantee the nonnegativity of G(¢’). Hence in
principle, we have the same form for g(n) as in (5).
There are some basic differences however: In linear
programming gz (n) is automatically restricted to be of
finite length. That is, it is guaranteed that gr(n) =0
for N < |n| < L—N. This s, in general, not true in the
window method. The order of w(n) should be the same
as that of g(n) in the window method while this is not
necessary in the linear programming method. In the
special case where L = 2N, the two methods become
the same! Hence the window method becomes an effi-
cient way of solving a linear programming problem. In
[4] we give a detailed comparison of the two methods.

5 Remarks and Conclusions

We have discussed some efficient design methods for
FIR compaction filters. We first proposed a simple
way to guarantee the nonnegativity of the linear pro-
gramming solutions. Then we have considered multi-
stage extensions. These offer reduction in both design
and implementation complexity. We have also briefly
described a noniterative technique called the window
method and discussed its relevance to the linear pro-
gramming technique. When the number of frequencies
in the linear programming is moderate, we have seen
that the “lifting” technique to assure nonnegativity of
G(e#*) resulted in significant loss. In these cases op-

timization of the window in the windowing technique
was the best. When the number of frequencies is high
however, then either “lifting” or the use of a triangular
window resulted in very little loss in compaction gain.
Finally we noted that when L = 2N, the linear pro-
gramming and the window methods become the same.
Since the window method is much faster, it should be
preferred to the linear programming technique if L is
chosen to be moderate (e.g., not much larger than 2N).
We conclude the paper by referring to an important ob-
servation made in [4] that states that if the filter order is

~ relatively high, then the linear programming technique

can be avoided altogether because the choice L = 2N
yields very good window-based design.
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